skip to main content


Search for: All records

Creators/Authors contains: "Couch, Sean M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Multi-messenger astrophysics has produced a wealth of data with much more to come in the future. This enormous data set will reveal new insights into the physics of core-collapse supernovae, neutron star mergers, and many other objects where it is actually possible, if not probable, that new physics is in operation. To tease out different possibilities, we will need to analyze signals from photons, neutrinos, gravitational waves, and chemical elements. This task is made all the more difficult when it is necessary to evolve the neutrino component of the radiation field and associated quantum-mechanical property of flavor in order to model the astrophysical system of interest—a numerical challenge that has not been addressed to this day. In this work, we take a step in this direction by adopting the technique of angular-integrated moments with a truncated tower of dynamical equations and a closure, convolving the flavor-transformation with spatial transport to evolve the neutrino radiation quantum field. We show that moments capture the dynamical features of fast flavor instabilities in a variety of systems, although our technique is by no means a universal blueprint for solving fast flavor transformation. To evaluate the effectiveness of our moment results, we compare to a more precise particle-in-cell method. Based on our results, we propose areas for improvement and application to complementary techniques in the future.

     
    more » « less
  2. Abstract

    We analyze the directional dependence of the gravitational wave (GW) emission from 15 3D neutrino radiation hydrodynamic simulations of core-collapse supernovae (CCSNe). Using spin weighted spherical harmonics, we develop a new analytic technique to quantify the evolution of the distribution of GW emission over all angles. We construct a physics-informed toy model that can be used to approximate GW distributions for general ellipsoid-like systems, and use it to provide closed form expressions for the distribution of GWs for different CCSN phases. Using these toy models, we approximate the protoneutron star (PNS) dynamics during multiple CCSN stages and obtain similar GW distributions to simulation outputs. When considering all viewing angles, we apply this new technique to quantify the evolution of preferred directions of GW emission. For nonrotating cases, this dominant viewing angle drifts isotropically throughout the supernova, set by the dynamical timescale of the PNS. For rotating cases, during core bounce and the following tens of milliseconds, the strongest GW signal is observed along the equator. During the accretion phase, comparable—if not stronger—GW amplitudes are generated along the axis of rotation, which can be enhanced by the lowT/∣W∣ instability. We show two dominant factors influencing the directionality of GW emission are the degree of initial rotation and explosion morphology. Lastly, looking forward, we note the sensitive interplay between GW detector site and supernova orientation, along with its effect on detecting individual polarization modes.

     
    more » « less
  3. Abstract

    Connecting observations of core-collapse supernova explosions to the properties of their massive star progenitors is a long-sought, and challenging, goal of supernova science. Recently, Barker et al. presented bolometric light curves for a landscape of progenitors from spherically symmetric neutrino-driven core-collapse supernova (CCSN) simulations using an effective model. They find a tight relationship between the plateau luminosity of the Type II-P CCSN light curve and the terminal iron-core mass of the progenitor. Remarkably, this allows us to constrain progenitor properties with photometry alone. We analyze a large observational sample of Type II-P CCSN light curves and estimate a distribution of iron-core masses using the relationship of Barker et al. The inferred distribution matches extremely well with the distribution of iron-core masses from stellar evolutionary models and namely, contains high-mass iron cores that suggest contributions from very massive progenitors in the observational data. We use this distribution of iron-core masses to infer minimum and maximum masses of progenitors in the observational data. Using Bayesian inference methods to locate optimal initial mass function parameters, we findMmin=9.80.27+0.37andMmax=24.01.9+3.9solar masses for the observational data.

     
    more » « less
  4. Abstract

    Recent studies have highlighted the sensitivity of core-collapse supernovae (CCSNe) models to electron-capture (EC) rates on neutron-rich nuclei near theN= 50 closed-shell region. In this work, we perform a large suite of one-dimensional CCSN simulations for 200 stellar progenitors using recently updated EC rates in this region. For comparison, we repeat the simulations using two previous implementations of EC rates: a microphysical library with parametrizedN= 50 rates (LMP), and an older independent-particle approximation (IPA). We follow the simulations through shock revival up to several seconds post-bounce, and show that the EC rates produce a consistent imprint on CCSN properties, often surpassing the role of the progenitor itself. Notable impacts include the timescale of core collapse, the electron fraction and mass of the inner core at bounce, the accretion rate through the shock, the success or failure of revival, and the properties of the central compact remnant. We also compare the observable neutrino signal of the neutronization burst in a DUNE-like detector, and find consistent impacts on the counts and mean energies. Overall, the updated rates result in properties that are intermediate between LMP and IPA, and yet slightly more favorable to explosion than both.

     
    more » « less
  5. Abstract

    Observations of core-collapse supernovae (CCSNe) reveal a wealth of information about the dynamics of the supernova ejecta and its composition but very little direct information about the progenitor. Constraining properties of the progenitor and the explosion requires coupling the observations with a theoretical model of the explosion. Here we begin with the CCSN simulations of Couch et al., which use a nonparametric treatment of the neutrino transport while also accounting for turbulence and convection. In this work we use the SuperNova Explosion Code to evolve the CCSN hydrodynamics to later times and compute bolometric light curves. Focusing on Type IIP SNe (SNe IIP), we then (1) directly compare the theoretical STIR explosions to observations and (2) assess how properties of the progenitor’s core can be estimated from optical photometry in the plateau phase alone. First, the distribution of plateau luminosities (L50) and ejecta velocities achieved by our simulations is similar to the observed distributions. Second, we fit our models to the light curves and velocity evolution of some well-observed SNe. Third, we recover well-known correlations, as well as the difficulty of connecting any one SN property to zero-age main-sequence mass. Finally, we show that there is a usable, linear correlation between iron core mass andL50such that optical photometry alone of SNe IIP can give us insights into the cores of massive stars. Illustrating this by application to a few SNe, we find iron core masses of 1.3–1.5Mwith typical errors of 0.05M. Data are publicly available online on Zenodo: doi:10.5281/zenodo.6631964.

     
    more » « less
  6. null (Ed.)